

Research Center for Pharmaceutical Nanotechnology Tabriz University of Medical Sciences

RCPN

RNA extraction procedure PSR

Golchin. A 12/30/2015

Workflow

RNA extraction \longrightarrow cDNA synthesis (RT-PCR) \longrightarrow Real-Time PCR \longrightarrow Data analysis

Detailed procedure

1. RNA extraction procedure

All Analysis requires firstly the extraction of RNA from a biological source of interest. Prepare all materials below then start!

Materials

product	Cat. No.
Trizol Reagent	66322
Chloroform	CL02002500-13226508
Isopropanol	-
1.5 mL micro-centrifuge tubes	-
Aerosol Resistant Tips	-
(1000E, 200E, 20E, 10E)	
Eppendorf Micro centrifuge	
Ultrapure Dnase/Rnase-Free Distilled water	DW8520

Biohazard Consideration:

Trizol is very toxic reagent. Working with Trizol should be in a fume hood and using
personal protection equipment such as gloves, eye protection and etc.

Method

- 1. Remove the media (for adherent cells just remove whole media covering the cells but for the suspend cells first centrifuge the media in 130g for 5 minutes then remove the supernatant).
- 2. Add 400 μ L Trizol reagent (for each plate containing 5×10⁵ cells) and shake it for 20 min in room temperature to disrupting cells. (This amount of Trizol is used for each well of six-well plate).
- 3. Place the supernatant into a 1.5 mL Eppendorf tube.
- 4. Add 200 μ L chloroform and shake the tube by hand for about 15 sec.
- 5. Incubate for 5 min in room temperature.
- 6. Centrifuge at 10,000 rpm for 5 minutes at 4°C.
- 7. Following centrifugation, the mixture in each tube separates into:
 - ✓ Top layer: colorless upper aqueous phase
 - ✓ Middle layer or interphase
 - ✓ Bottom layer: low red phase
- 8. Transfer the aqueous phase to a fresh tube.
- 9. Add 500 μ L isopropanol and leave at room temperature for 5 min.
- 10. Centrifuge at 12,000 rpm for 10 minutes at 2-8°C.
- 11. Remove the supernatant.

- 12. A pellet will be visible at the base of each tube. Let the pellets air-dry.
- 13. Add 20 µL DEPC water to the RNA pellet.
- 14. Transfer tubes to 70°C heat block for 2-3 minutes.
- 15. Use nanodrop instrument for measuring RNA concentration and purity. (The 260/280 ratio should be greater than 1.8)

RCPN